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Hyperspectral instruments provide the spectral detail necessary for extracting multiple layers of infor- 
mation from inherently complex coastal environments. We evaluate the performance of a semi-analytical 
optimization model for deriving bathymetry, benthic reflectance, and water optical properties using hy- 
perspectral AVIRIS imagery of Kaneohe Bay, Hawaii. We examine the relative impacts on model per- 
formance using two different atmospheric correction algorithms and two different methods for 
reducing the effects of sunglint. We also examine the impact of varying view and illumination geometry, 
changing the default bottom reflectance, and using a kernel processing scheme to normalize water prop- 
erties over small areas. Results indicate robust model performance for most model formulations, with the 
most significant impact on model output being generated by differences in the atmospheric and deglint 
algorithms used for preprocessing.   © 2008 Optical Society of America 

OCIS codes:     010.0010, 010.0280, 100.3190, 110.2960, 110.4234, 280.0280. 

1.   Introduction 

Remote sensing of shallow aquatic environments 
provides fundamental information needed for the ef- 
fective assessment, monitoring, and management of 
these valuable natural ecosystems. The synoptic cap- 
abilities of remote sensing offer the quantitative abil- 
ity to obtain spatially explicit data over extensive 
study areas that would otherwise be logistically dif- 
ficult to obtain. The derived information contributes 
to analysis of spatially distributed environmental re- 
lationships, as well as providing base maps for plan- 
ning and management. However, there are many 
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challenges and a number of physical limitations re- 
lated to remote sensing of aquatic environments, 
mostly as a function of the complex energy interac- 
tions in the water and at the air-water interface, 
the strong absorption and scattering properties of 
water and its constituents, and the inherent spatial 
heterogeneity of water optical properties and benthic 
composition. Nonetheless, advances in instrument 
capabilities and an increasing sophistication in the 
available analysis methods, particularly in the field 
of hyperspectral remote sensing, are addressing 
these challenges and facilitating greater complexity 
in the level of scientific questions that can be ad- 
dressed using remote sensing. 

Hyperspectral    data    have    been    utilized    for 
deriving information on coastal water properties 
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and constituents [1-5], extracting information on 
benthic habitat composition [6-9], and estimating 
bathymetry [10,11]. In most cases, these indepen- 
dent objectives are achieved using various simplify- 
ing assumptions to significantly reduce system 
complexity (e.g., assuming spatially uniform water 
properties while deriving information on habitat 
composition). In contrast, there is an emerging class 
of algorithms that are being used to simultaneously 
derive multiple layers of information from a single 
image [12-20]. These algorithms typically follow 
physically based approaches. Although empirical re- 
lationships and simplifications are still utilized, they 
maintain spatial variability in the parameters of in- 
terest and thereby present a more comprehensive so- 
lution to the inverse problem. 

One of the algorithms that is being increasingly 
applied is the semi-analytical inversion model devel- 
oped by Lee et al. [18,19]. This model utilizes a non- 
linear optimization scheme to derive estimates of 
water properties, bathymetry, and bottom reflec- 
tance given surface remote sensing reflectance as in- 
put without requiring any a priori knowledge of 
environmental parameters. Output from the model 
includes estimates of P, the phytoplankton absorp- 
tion coefficient at 440 nm; G, the absorption coeffi- 
cient for gelbstoff and detritus at 440 nm; BP, a 
variable representing the combined influences from 
the particle-backscattering coefficient, view angle, 
and sea state; B, the bottom albedo at 550 nm; and 
H, the water depth. Application of this model has fo- 
cused mostly on its stand-alone implementation [21- 
23]but has recently also been utilized as the founda- 
tion for spectral unmixing analysis of benthic compo- 
sition [17,24]. In addition to the testing completed 
during model development, these applications have 
further confirmed effectiveness of the model across 
different geographic locations (Tampa Bay, Florida 
Keys, Bahamas, Hawaii, Puerto Rico) and across dif- 
ferent sensor systems (AVIRIS, HYPERION). 

As this model increases in use, there is a need to 
investigate and explain the influence of different 
model inputs on its performance. We illustrate the 
impacts of using different atmospheric (ACORN, 
Tafkaa) and sunglint correction options [19,25], of 
using different assumptions for view and illumination 
geometry, and of using different default spectra to re- 
present the normalized bottom reflectance. We also 
investigate the effectiveness of using a moving kernel 
in the optimization process to locally average water 
column properties while retaining independent esti- 
mations of bathymetry and bottom reflectance. Model 
results are evaluated using AVIRIS data from Ka- 
neohe Bay, Hawaii, with lidar bathymetry data and 
in situ benthic reflectance as measured ground truth. 

2.   Data 

A.    Study Area 

The study area for this project, Kaneohe Bay, is lo- 
cated on the northeast (windward) shore of Oahu, 

Hawaii (Fig. 1). Kaneohe Bay is a partially enclosed 
embayment, containing a sizeable lagoon area, ex- 
tensive fringing reefs, more than 60 individual patch 
reefs, a protecting barrier reef, natural and man- 
made channels, colonized and uncolonized hardbot- 
tom areas, and extensive regions of unconsolidated 
sediments (e.g., sand and mud). The shallow fringing 
reefs are present along most of the shoreline, with 
natural breaks at stream outlets and artificial 
breaks where boat channels have been dredged. 
The patch reefs are located throughout the bay, some 
having diameters up to 1000 m, and typically extend 
from the lagoon bottom nearly to the water surface. 
The barrier reef, which is more than 5 km long and 
2 km in width, bounds the ocean side of the bay. The 
landward side of the barrier reef contains a shallow 
reef flat transitioning into an extensive sand flat, and 
the offshore seaward side consists of a steep reef 
slope. Water clarity varies significantly in the bay, 
ranging from relatively clear conditions in the open 
northwest portion of the bay to poor conditions in the 
partially enclosed southeast portion of the bay. Habi- 
tat composition also varies, including typical hetero- 
geneous reef environments as well as regions that 
are coral or algae dominated. Kaneohe Bay is thus 
suitably varied to test model performance in a range 
of natural environmental conditions. 

B.   Hyperspectral Imagery 

AVIRIS hyperspectral imagery was acquired over ex- 
tensive areas of the Hawaiian Islands in early 2000. 
All imagery was collected from onboard a NASA ER- 
2 (a civilian high-altitude reconnaissance platform) 
from an altitude of 20 km, producing a nominal pixel 
size of 17 m and a swath width of approximately 
10 km. AVIRIS is a "whisk broom" scanner that uses 
a combination of three detector types to measure 224 
contiguous spectral bands (channels) from 370 to 
2500 nm at a nominal spectral resolution of 10 nm 
[26,27].   Raw   AVIRIS   data   are   radiometrically 
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Fig. 1.    AVIRIS imagery of Kaneohe Bay, Oahu, Hawaii. 
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corrected by NASA's Jet Propulsion Laboratory 
and delivered to the user in units of radiance 
(/vWcm"2nm"1sr_1). The imagery for Kaneohe Bay 
was extracted from a longer flightline covering the 
entire northeast coast of Oahu acquired at 12:12 pm 
LST (22:12 GMT) on 12 April, 2000. All image anal- 
ysis products were georectified using 14 ground 
control points (RMS = 0.80) with a first degree poly- 
nomial and nearest neighbor resampling to produce 
an output image with 20 m pixels (UTM, Zone 4, 
NAD83). Before processing, the imagery was also 
subset to the 42 bands from 400 to 800 nm, and areas 
of land, clouds, cloud shadow, and deep water 
(>40 m) were masked to improve computational effi- 
ciency. 

C. Lidar Bathymetry 

Bathymetry data for Kaneohe Bay was acquired by 
the U.S. Army Corps of Engineers Joint Airborne 
Lidar Bathymetry Technical Center of Expertise 
(JALBTCX) using the Scanning Hydrographic 
Operational Airborne Lidar Survey (SHOALS). 
SHOALS is an airborne instrument that uses short 
pulses of light at two different wavelengths (532 and 
1064 nm) to derive estimates of water depth [28,29]. 
The vertical accuracy of the system is ± 15 cm, and 
the horizontal accuracy is ±3m using differential 
GPS (±1 m when using kinematic GPS from local sta- 
tions) [28]. Under ideal conditions the maximum re- 
solvable depth of the SHOALS system approaches 
60 m, but actual water conditions are typically more 
limiting and dictate a shallower practical limit. 

The SHOALS measurements for Kaneohe Bay 
were performed in early 2000 and thus nearly con- 
temporaneous with the AVIRIS data collection. 
The delivered data format was a series of irregularly 
spaced xyz points with a positional accuracy of ±3m 
and a sampling density of 0.06pulses/m2, which 
equates to one pulse (or one depth measurement) 
for every 16 m2 (i.e., 4 m pixel). The bathymetric data 
thus needed to be spatially interpolated and re- 
sampled to the same geographic projection and spa- 
tial resolution as the AVIRIS imagery (UTM, Zone 4, 
NAD83, 20 m pixels). The interpolation process was 
performed using a spline function to first create a 
grid of 4 m pixels, and then using spatial averaging 
to generate 20 m pixels. A correction was also in- 
cluded in the final SHOALS image to reflect tidal 
conditions at the time of AVIRIS image acquisition 
(+0.1 m above mean lower low water; NOAA water 
level station #1612480 in Kaneohe Bay). The result- 
ing SHOALS measurements indicated the appropri- 
ate maximum depths of 15-20 m within Kaneohe 
Bay and extended offshore to an apparent detection 
limit of ~30 m outside the bay. 

D. Field Spectra 

Measurements of in situ underwater bidirectional re- 
flectance were collected for sand, coral and algae in 
Kaneohe Bay during October 2001 and April 2002. A 
statistical analysis revealed no significant difference 

between average spectra from the different dates, 
and because there were no major intervening envir- 
onmental disturbances, the data were assumed re- 
presentative of reflectance characteristics in 2000. 
Measurements were performed using a modified 
GER-1500 spectrometer (Spectra Vista Corp., Pough- 
keepsie, N.Y.) encased within a custom underwater 
housing. The GER-1500 is a field-portable instru- 
ment that measures 512 spectral bands in the region 
from 350 to 1050 nm at a resolution of 1.5 nm. The 
instrument was configured with an 8° full-angle fore- 
optic, used automatic integration speed, and aver- 
aged four detector scans for every saved spectrum. 
Measurements were acquired in situ using a shadow- 
ing protocol to minimize effects from fluctuating un- 
derwater light conditions [30,31]. A 99% Spectralon 
panel (Labsphere, Inc., North Sutton, N.H.) was used 
for reference measurements, and reflectance was cal- 
culated as the ratio of each target spectrum to its as- 
sociated reference spectrum. 

The field spectra served two different purposes in 
the analysis, as ground truth for evaluating model 
estimates of benthic reflectance and as different 
model inputs for the default normalized bottom re- 
flectance. For use as ground truth, sand spectra were 
measured from a total of 12 distinct areas (locations 
recorded with GPS), each approximately 10,000 m2 

in extent, relatively level, spatially homogeneous, 
and distributed at different locations and depths 
throughout the study area. Data were collected from 
40 to 60 random locations in each sand area, and sub- 
sequently used to generate a set of 12 average spec- 
tra. For use as the normalized bottom reflectance, all 
sand measurements were grouped to create a single 
average sand spectrum, and numerous additional 
measurements (n = 254 from dominant coral species 
P. compressa and M. capitata; n = 174 from domi- 
nant algae species D. cavernosa and G salicornia) 
were used to produce average coral and algae spec- 
tra. The final sand, coral, and algae spectra were nor- 
malized to 1 at 550 nm and spectrally resampled to 
match AVIRIS for use as input to the model (Fig. 2). 

3.   Methods 

A.   Atmospheric Correction and Deglint 

Atmospheric correction algorithms calibrate imagery 
from at-sensor radiance to reflectance at the water 
surface, and deglint algorithms are utilized to re- 
move, or minimize, the effects of specular reflection 
at the water surface (i.e., sunglint). Because these 
two preprocessing corrections are interrelated, a 
complete solution to the problem is to integrate 
the two procedures and resolve both the atmospheric 
and glint corrections simultaneously (as suggested 
by [32,33]). In the absence of any readily available 
integrated algorithms, however, it is common to in- 
stead independently apply the two correction algo- 
rithms. We follow this independent approach and 
examine the resulting impact on performance of 
the inversion model using two different atmospheric 
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Fig. 2. Normalized average field spectra, shown with spectral re- 
sampling to match AVIRIS spectral characteristics. 

correction algorithms, ACORN (v. 4.0) and Tafkaa 
(v. 2003), and two different deglint algorithms 
[19,25]. The deglint algorithms selected for this 
study are representative of two different correction 
schemes: one algorithm uses an independent correc- 
tion for every pixel [19], and the other algorithm uses 
a subset of the image to determine correction para- 
meters for the entire image [25]. 

ACORN (Analytical Imaging and Geophysics, 
LLC, Boulder, Colo.) utilizes at-sensor radiance data 
as input and employs MODTRAN-based radiative 
transfer calculations to produce estimates of appar- 
ent surface reflectance [34]. The algorithm was run 
in Mode 1 (hyperspectral atmospheric correction of 
complete image) with a tropical atmospheric model, 
using the 940 and 1140 nm bands to derive water va- 
por and allowing the model to estimate atmospheric 
visibility. ACORN provides three options to account 
for residual artifacts in the reflectance output: type 1 
corrects for spectral mismatch between instrument 
calibration and the radiative transfer algorithm oc- 
curring at strong atmospheric absorption features 
(760, 940, 1150, and 2000 nm), type 2 suppresses 
minor artifacts throughout the spectrum associated 
with errors in the radiometric calibration and radia- 
tive transfer equations, and type 3 adjusts the 
portions of the spectrum around the 1400 and 
1900 nm water vapor bands with low measured radi- 
ance to zero [34]. To investigate differences in output, 
ACORN was run using two options, one with all ar- 
tifact suppression options (types 1, 2, and 3) and one 
with no artifact suppression options. Additionally, to 

match the input requirements of the semi-analytical 
optimization model, ACORN output, fiACORN. 

was 

converted to remote sensing reflectance, /?re (defined 
as the ratio of water leaving radiance to the down- 
welling  irradiance  on  the   surface)   according  to 
^rs = ^ACORNA • 

Tafkaa (U.S. Naval Research Laboratory, Washing- 
ton, DC) is a hyperspectral atmospheric correction 
algorithm developed specifically to address the con- 
founding variables associated with shallow water ap- 
plications [35-37]. The algorithm is an extensively 
modified version of ATREM [38,39] that employs a 
lookup table approach to estimate remote sensing re- 
flectance based on the spectral characteristics of the 
at-sensor radiance data. The algorithm was run 
using a tropical atmospheric model, including an ar- 
ray of gaseous absorption calculations (H20, C02, 
03, N20, CO, CH4, 02), excluding urban aerosols, 
and assigning the 1040, 1240, 1640, and 2250 nm 
bands as wavelengths with no apparent water leav- 
ing radiance. Corrections using these parameters 
were performed using two separate analysis options. 
The first option used a rectangular deep-water sub- 
set for determining the aerosol type and optical 
depth and used nadir viewing geometry for calculat- 
ing atmospheric absorption and scattering. The sec- 
ond option followed similar computations but was 
operated on a pixel-by-pixel basis to explicitly ac- 
count for varying view and illumination geometry 
throughout the scene. 

The first deglint option used a 750 nm normalizing 
scheme derived from Lee et al. [19], which assumes 
that reflectance at 750 nm should approach zero 
but that situations exist where this reflectance is 
greater than zero (e.g., shallow areas in clear water). 
The sunglint correction is calculated as a constant 
offset across all wavelengths such that reflectance 
at 750 nm is equal to a spectral constant, A. For 
raw remote sensing reflectance, i?re

raw(sr-1)), as de- 
rived through atmospheric correction, an approxima- 
tion of surface remote sensing reflectance, i?rs(sr_1), 
is determined by 

R„(A) = Rn•W -*„raw(750) + A, (1) 

A = 0.000019 + 0.1 [i?re
raw(640) -flre

raw(750)].   (2) 

The second deglint option follows Hochberg et al. 
[25], which also assumes water leaving radiance in 
the near-infrared (NIR) should approach zero. The re- 
lative intensity of sunglint, fg, and the absolute sun- 
glint intensity, iirg81"11^), are both derived using 
minimum and maximum data from a spatial subset 
of uniform deep water. In this case, the subset was se- 
lected to extend across a deep-water section encom- 
passing the full characteristics of the cross-track 
sunglint. Glint correction for the image is calculated as 

RnW=Rn
TmW-fJtn

aijAW- (3) 
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B.   Semi-Analytical Inversion Model 

The semi-analytical model described by Lee et al. 
[18,19] presents an inversion scheme for retrieving 
estimates of water optical properties, bathymetry, 
and albedo at 550 nm from measured values of re- 
mote sensing reflectance at the water surface. An 
overview is presented below. The model first defines 
a relationship between /?ra and subsurface rre (sr_1), 
the ratio of upwelling radiance to downwelling radi- 
ance evaluated just below the air-water interface: 

R, 
0.5rr 

1 - 1.5iv 
(4) 

where the numerator accounts for transmission 
through the air-water interface and the denominator 
accounts for the effects of internal reflectance (note 
that the explicit dependence on wavelength has been 
dropped for convenience). The governing equation of 
the semi-analytical inversion model is then defined by 

dp (l-exp{-[; + • D„ 
cos(0u,)    cos(0) "} 

Water column contribution 

-Pt,B x exp {" + • 
W 

cos(0w)    cos(0) 
KH 

4- 
Bottom contribution 

(5) 

where rre
dp(sr-1) is the subsurface remote sensing re- 

flectance for optically deep water; 0„,(rad) is the sub- 
surface solar zenith angle; 0(rad) is the subsurface 
view angle; K-(m_1) is the summation of the total back- 
scattering and absorption coefficients; H(m) is water 
depth; Du

c and DU
B are the optical path elongation 

factors for scattered photons from the water column 
and bottom, respectively; pb is a representative bot- 
tom spectrum normalized to 1 at 550 nm; and B is 
the bottom albedo (reflectance) at 550 nm. The compo- 
nents rre

dp, K, Du
c, and DU

B are further denned as 
functions of the absorption coefficient for gelbstoff 
and detritus at 440 nm, G (m_1), the phytoplankton 
absorption coefficient at 440 nm, P (m_1), and a com- 
bined variable representing the influences from the 
particle-backscattering coefficient, view angle, and 
sea state, BP (m1). Ultimately, hyperspectral R^ be- 
comes approximated as a function of just five un- 
known variables: 

RTS=f{P,G,BP.B,H}. (61 

The model is solved using constrained nonlinear 
optimization to produce estimates of remote sensing 
reflectance, R^"', by iteratively adjusting values for 
P, G, BP, B, and H such that the difference between 
Rrs and i?re

cs' is minimized. The model requires no a 
priori information on environmental characteristics. 
We have implemented this model in the Interactive 
Data Language (Research Systems, Inc., Boulder, 
Colo.) as part of an aquatic analysis package called 

AquaCor. Under this framework, model optimization 
is achieved utilizing a generalized reduced-gradient 
algorithm to solve the following objective function: 

mm WRrsW-R^'i^P^BP^M) 

,    . _ /400 
forAef720 

WRrsW II: 

g00j subject to< 

0.005 <;P<; 0.5 
0.002 <; G H 3.5 

0.001 <.BP<. 0.5, 
0.01 <,B<, 0.6 
0.2 <.H<, 33.0 

(7) 

where    ||^x: || 2    is    the    Euclidean    norm    defined 

by\/5>J*- 
C. Kernel Processing 

The overall model operates separately on every pixel 
in the image, with no information shared between 
any of the adjacent pixels. Although this pixel- 
independent approach is appropriate for bathymetry 
and bottom albedo estimations in most situations, 
particularly in heterogeneous reef environments, it 
can be argued that water properties are not likely 
to vary significantly at the pixel scale and a different 
approach is required for these parameters. Following 
this logic, we introduce a new processing capability 
for the inversion model that maintains independence 
of the bathymetry and albedo parameters but 
imposes spatial uniformity in water properties with- 
in a moving kernel of pixels (i.e., 3x3, 5x5, etc.). 
This is achieved by expanding the objective function 
used for solving each pixel to incorporate its sur- 
rounding pixels: 

£i inw*)ii« 
for n = odd numbers > 3 and subject to the same 
parameter constraints and range of wavelengths 
as in Eq. (7). This approach still obtains an indepen- 
dent solution for every pixel but allows localized uni- 
formity in water properties. 

D. Analysis Procedure 

Analysis is performed by implementing the inversion 
model using a series of different preprocessing 
schemes and model formulations: 

- A qualitative analysis is first used to evaluate 
output from the different combinations of atmo- 
spheric and deglint algorithms. 

- The SHOALS data are used as ground truth to 
evaluate differences in model estimated bathymetry 
resulting from the different preprocessing algo- 
rithms. 

- The SHOALS data are used as ground truth to 
examine differences in two different scenarios for 
subsurface view and illumination angles: (1) using 
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a constant nadir for both view and illumination an- 
gles (0 = 0W = 0°) and (2) using the AVIRIS naviga- 
tion files to generate pixel-specific view and 
illumination angles. 

- Bathymetry estimates are next evaluated for 
four different spectra representing the default bot- 
tom reflectance: sand, coral, algae, and a flat spec- 
trum with all wavelengths set to 1.0. 

- Bathymetry estimates are then evaluated for 
two different options of the kernel processing 
scheme, using 3x3 and 5x5 kernels. 

- A final evaluation examines model estimated 
reflectance at 550 nm (parameter B) compared with 
the in situ reflectance spectra measured at the 12 
sand locations. 

4.   Results and Discussion 

A.    Preprocessing Algorithms 

The AVIRIS imagery used in this study was collected 
for terrestrial applications on Oahu, and because it 
was not optimized for aquatic analysis, the resulting 
view and illumination geometry produced significant 
cross-track sunglint in the water portions of the im- 
age. This provides the opportunity to evaluate the 
combined effectiveness of the atmospheric and sun- 
glint removal algorithms in less than ideal conditions, 
under which the capacity for properly correcting the 
image becomes significantly more important. 

The first step in this evaluation is to examine the 
output from the four different atmospheric correction 
options. Figure 3 illustrates average cross-track re- 
flectance at 750 nm over deep water and a spectral 
profile of reflectance over a shallow submerged sand 
area as produced by these different options. Surface 
reflectance in the NIR over deep water should ap- 
proach zero, however, as shown in Fig. 3(a) most of 
the atmospheric correction routines do not properly 
achieve this result. Both of the ACORN options and 
the Tafkaa option using the deep water subset retain 
significant influence from the cross-track sunglint. In 
contrast, although the Tafkaa option using full geo- 
metry produces minor negative reflectance values, 
its correction does effectively remove the cross-track 
effect. For the shallow sand area (Fig. 3(b)) the full 
geometry Tafkaa option again produces acceptable 
results, while the three other options produce a pro- 
file with similar spectral shape but with an inap- 
propriate upward shift in the overall magnitude of 
reflectance. The ACORN option with artifact sup- 
pression also exhibits an anomalous overcorrection 
in the wavelengths closest to 400 nm (depicted as in- 
creased reflectance in shorter wavelengths), which is 
attributed to the artifact suppression algorithms. As 
with the cross-track analysis, the upward shift in the 
spectra is considered a function of unconnected sun- 
glint effects. It is concluded that the full geometry 
Tafkaa option produces the best initial results but 
that atmospheric correction alone is not sufficient 
to fully correct for the sunglint effects. 
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Fig. 3. Remote sensing reflectance output following atmospheric 
correction: (a) 10-line cross-track average of deep water at 750 nm, 
(b) 9-pixel average spectral profile for submerged sand at 3 m depth. 

The two deglint algorithms were subsequently ap- 
plied to the atmospherically corrected data to remove 
the cross-track and wave-induced sunglint. Results 
are illustrated in Figs. 4 and 5 using the same deep 
water region and shallow sand area as used in Fig. 3. 
It is immediately apparent from this comparison 
that the 750 nm normalizing scheme (Fig. 5) consis- 
tently generates the best results. This scheme re- 
moves the cross-track sunglint effects, produces 
reflectance values near zero in deep water at 
750 nm, and results in closely similar spectral pro- 
files for the shallow sand area. In contrast, the 
Hochberge* al. deglint algorithm (Fig. 4) still retains 
some of the cross-track effects, which are evident as 
positive (undercorrected) and negative (overcor- 
rected) offsets in the spectral output. These offsets 
result because a single correction relationship is ap- 
plied across the entire scene, whereas the cross-track 
effects introduce the need for a variable relationship. 
Although the HochbergeJ al. algorithm, and other si- 
milar approaches (e.g., [40]), have proved effective at 
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Fig. 4. Remote sensing reflectance output following atmospheric 
correction and Hochbergef al. deglint algorithm: (a) 10-line cross- 
track average of deep water at 750 nm, (b) 9-pixel average spectral 
profile for submerged sand at 3 m depth. 

removing wave-induced sunglint, cross-track correc- 
tions require a more dynamic approach. As illu- 
strated here, the 750 nm normalizing method, 
where corrections are independently performed on 
each pixel, represents a viable solution to this issue. 

We next implemented the inversion model using 
12 different preprocessing scenarios and performed 
a quantitative analysis of model estimated bathyme- 
try for each scenario using the SHOALS bathymetry 
data as ground truth. Results from this analysis are 
presented in Table 1, specifying the regression coef- 
ficient, r, the slope of linear least-squares fit, m, and 
the average absolute difference, a, for each scenario 
from 0 to 20 m water depth. The best overall scenario 
was the combination of full geometry Tafkaa with the 
750 nm normalizing algorithm for deglinting. This 
scenario exhibited a strong, nearly one-to-one, corre- 
lation (r = 0.9, m = 1.03), with an average absolute 
difference of 1.6 m for depths from 1 to 20 m (Fig. 6), 
which indicates a robust capacity for estimating 

100        200        300        400        500 
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(b) 

800 

Fig. 5. Remote sensing reflectance output following atmospheric 
correction and 750 normalizing deglint algorithm: (a) 10-line cross- 
track average of deep water at 750 nm, (b) 9-pixel average spectral 
profile for submerged sand at 3 m depth. 

bathymetry. The strength of this relationship is also 
particularly encouraging considering there are some 
acknowledged residual errors resulting from misre- 
gistration and spatial resampling. The best perfor- 
mance is achieved in depths from 0 to 7 m, with 
overestimation observed in depths greater than 
7 m. Other applications of the inversion model have 
shown strong bathymetric agreement for depths of 
15 m or greater [19,23]. Hence, we attribute the over- 
estimation in this case to be a function of the water 
optical properties in Kaneohe Bay, where water 
clarity is relatively limited compared with typical 
reef environments. 

Other promising results included the Tafkaa op- 
tion using the deep water subset and the ACORN op- 
tion with no artifact suppression, both combined 
with the 750 nm normalizing algorithm, as well as 
the full geometry Tafkaa option with no deglint 
(but all exhibiting either slightly lower regression 
coefficients or significantly lower slope than the best 
overall option). All other ACORN options and all of 
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Table 1.   SHOALS Data Versus Estimated Bathymetry (Correlation 
Coefficient, r; Slope of Best Fit Curve, m; absolute error, a) for 0-20 m 

Water Depth Using Different Preprocessing Algorithms for 
Atmospheric Correction and Deglint* 

r m a E 
NO Deglint 

ACORN (no artifact suppression) -0.104 -0.00 6.29 m d) 
ACORN (artifact suppression) -0.131 -0.00 6.29 m 

CD Tafkaa (deep water subset) 0.682 0.80 3.20 m 
Tafkaa (full geometry) 0.894 1.03 1.70m > 

Hochberg et al. Deglint 
ACORN (no artifact suppr.) -0.234 -0.01 6.17m iO 
ACORN (artifact suppr.) -0.253 -0.01 6.19 m cE 
Tafkaa (deep water subset) 0.486 0.81 4.58 m > 
Tafkaa (full geometry) 0.780 1.27 3.74m < 

750 Normalizing Deglint 
ACORN (no artifact suppr.) 0.912 0.80 1.26m 
ACORN (artifact suppr.) 0.795 0.74 1.76m 
Tafkaa (deep water subset) 0.907 1.13 2.00 m 
Tafkaa (full geometry) 0.902 1.03 1.64 m 

" All model runs were performed using full geometry for view 
and illumination angles and an average sand spectrum as the de- 

the options with Hochberg et al. deglinting did not 
perform as strongly. It becomes apparent from this 
analysis that the preprocessing procedure can have 
a large impact on model output, particularly situa- 
tions with a large amount of cross-track sunglint. 
The algorithms selected for further evaluation of 
the performance of the inversion model were the full 
geometry Tafkaa option combined with the 750 nm 
normalizing deglint algorithm. 

B. View and Illumination Geometry 

Two different scenarios were utilized to investigate 
the impacts of using different assumptions regarding 
the view and illumination geometry. One option as- 
sumed constant nadir view and illumination angles 
(9 = 6W = 0°), and the other option used information 
derived from the AVIRIS navigation files to generate 
pixel-specific angles. Results from this comparison 
are presented in Table 2. This analysis exhibits neg- 
ligible differences between the two different view and 
illumination scenarios. As a caveat, however, the 
average subsurface solar angle for this scene was 
only 9.4°, and the analysis area included only the 
middle third of the AVIRIS image where view angles 
are lowest (<10°). We hypothesize that these differ- 
ences will be more substantial for higher view and 
sun angles and suggest including pixel specific view 
and illumination information when available. 

C. Default Bottom Spectrum 

The model includes a default spectrum [pt,, in Eq. (5)] 
that combines with parameter B to serve as a proxy 
for bottom reflectance p ~ PbB/n. Lee et al. [18] ori- 
ginally used a simple spectral constant to represent 
the default spectrum, and other applications have 
since used measured sand or seagrass spectra with 
similar success [17,19,21-23]. Further, Goodman 
and Ustin [17] found that model performance was 
not significantly impacted when using different de- 
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r = 0.902 
m= 1.03 
n = 88,123 

5 10 15 

SHOALS measured depth, m 

(a) 

20 

Bathymetry error, m 

(b) 

Fig. 6. Bathymetry analysis using full geometry Tafkaa, 750 nm 
normalizing deglint, full geometry for view and illumination an- 
gles, and an average sand spectrum as the default benthic input: 
(a) scatterplot of model derived bathymetry versus SHOALS 
bathymetry, (b) histogram of bathymetry errors. 

fault spectra as input. In order to provide a quanti- 
tative indication of this parameter's influence, four 
different spectra were used as input, three derived 
from measured field spectra for sand, coral, and 
algae (Fig. 2) and one spectrum set to a constant 

Table 2.   SHOALS Data Versus Estimated Bathymetry 
(Correlation Coefficient, r; Slope of Best Fit Curve, m\ Absolute 
Error, a) for 0-20 m Water Depth Using Different Subsurface View 

and Illumination Geometries* 

Nadir 
Full Geometry 

0.902 
0.902 

1.04 
1.03 

1.66 m 
1.64m 

"Both model runs were performed using full geometry Tafkaa, 
750 nm normalizing deglint, and an average sand spectrum as 
the default benthic input. 
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value of 1.0. Results were again analyzed by compar- 
ing estimated bathymetry with the measured 
SHOALS data (Table 3). This comparison indicates 
only minor variations in the output, despite the dif- 
ferences in the input spectra. Even the flat spectrum 
produced reasonable output. This favorable function- 
ality is attributed to the fact that optimization is 
a function of the entire spectrum from 400 to 
800 nm, a region where the most significant influ- 
ence is attenuation in the water column, particularly 
at longer wavelengths. Thus, the more minor differ- 
ences in spectral shape associated with the different 
input spectra are substantially less influential on the 
optimization. This suggests that within reason the 
model is not overly sensitive to the input spectrum 
and that it can be applied over diverse bottom fea- 
tures with minimal impact on performance. 

D. Kernel Processing 

A final bathymetry analysis was performed using 
three different kernel processing options: the default 
lxl scenario, as well as 3 x 3 and 5x5 kernel scenar- 
ios. Results are presented in Table 4, where it is evi- 
dent that the kernel processing option leads to 
decreasing accuracy for estimating bathymetry. A 
comparison of other model output parameters con- 
firms that the processing scheme produces greater lo- 
cal uniformity in the water properties, as intended, 
but at the expense of introducing errors primarily 
in the bathymetry. Such results are not entirely unex- 
pected, however, particularly in a model limited to 
only five output parameters, where changes imparted 
on three of the parameters (P, G, BP) are manifest in 
changes to the two other parameters (B, H). Further, 
the computational penalty for including the kernel op- 
tions increased processing time from 30 min (desktop 
PC with 3.20 GHz CPU and 1.0 GB RAM) to 24 h for 
the 3x3 kernel and over 6 days for the 5x5 kernel. 
Together, these results indicate that the model should 
retain its original processing architecture of proces- 
sing each pixel independently. 

E. Benthic Reflectance 

Another measure of accuracy was evaluated by com- 
paring model-derived estimates of bottom reflec- 
tance at 550 nm with measured data at 12 sand 
areas in Kaneohe Bay. The 12 areas were located 
at depths varying from 0.5 to 15.5 m and spatially 

Table 3.   SHOALS Data Versus Estimated Bathymetry 
(Correlation Coefficient, r; Slope of Best Fit Curve, m; 

Absolute Error, a) for 0-20 m Water Depth Using Different 
Default Bottom Spectra as Model Input* 

Table 4.   SHOALS Data Versus Estimated Bathymetry 
(Correlation Coefficient, r, Slope of Best Fit Curve, m; 

Absolute Error, a) for 0-20 m Water Depth Using Different 
Spatial Kernels for Averaging Water Properties* 

r rfl a 

Sand 0.902 1.03 1.64 m 
Coral 0.902 0.99 1.48 m 
Algae 0.902 1.00 1.50 m 
Flat 0.901 0.96 1.40 m 

lx 1 
3x3 
5x5 

0.902 
0.801 
0.801 

1.03 
0.85 
0.81 

1.64 m 
1.89 m 
1.88 m 

"All model runs were performed using full geometry Tafkaa, 
750 nm normalizing deglint, and full geometry for view and illumi- 
nation angles. 

"All model runs performed using full geometry Tafkaa, 750 nm 
normalizing deglint, full geometry for view and illumination an- 
gles, and an average sand spectrum as the default benthic input. 

distributed throughout the bay. Average, minimum, 
and maximum reflectance values at 550 nm were ex- 
tracted from the merged 2001 and 2002 field data, 
which were assumed to be representative of reflec- 
tance at these same areas in 2000. Additionally, be- 
cause each of the selected sand areas was reasonably 
homogeneous, it was also assumed that the average 
characteristics extracted from the 40-60 point sam- 
ples at each field location were equivalent to average 
model estimates at the scale of image pixels. Values 
for model estimated reflectance at 550 nm (B) were 
extracted from the image areas corresponding to 
each of the field sampling locations. Figure 7 illus- 
trates results of the reflectance estimate differences 
at 550 nm from all 12 sand areas. Reflectance esti- 
mates for each area are within the range of measured 
field data for the majority of the sand areas, and the 
relative levels of reflectance also generally parallel 
the trends of lighter and darker sand areas (but with 
an average positive offset of 9.6%). This offset is par- 
tially attributed to scaling errors associated with 
comparing field measurements with image data 
but is also suggestive of the need to incorporate a 
fixed parameter resembling Q for optically shallow 
waters [41] (Q = Eu/Lu, the ratio of upwelling irradi- 
ance to upwelling radiance at nadir) in the equation 
for bottom reflectance (e.g., p ~ pbB/Q, with Q < it), 
rather than the current formulation using it to con- 
vert between the radiance and irradiance fields. In 
this example, Q = 2.6 would significantly improve 
the comparison of estimated reflectance with mea- 
sured sand reflectance for the 12 sand areas (redu- 
cing the average difference to 3%), which is in line 
with Q values for shallow sand areas measured by 
Voss et al. [41]. This avenue of research warrants 
further investigation. Nonetheless, because of the 
general consistency in the reflectance offset, which 
did not appear to adversely affect the bathymetry es- 
timates, results from the current model formulation 
were deemed reasonable. 

5.   Conclusions 

Numerous different scenarios were utilized in eval- 
uating output from the semi-analytical model using 
AVIRIS data from Kaneohe Bay. Model accuracy was 
primarily assessed using SHOALS bathymetry data 
but also using measured field reflectance spectra. Re- 
sults indicated that the most significant influence on 
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Fig. 7. Comparison of model derived reflectance at 550 nm versus 
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formed using full geometry Tafkaa, 750 nm normalizing deglint, 
full geometry for view and illumination angles, and an average 
sand spectrum as the default benthic input. 

model output was the selection of preprocessing 
schemes. The best preprocessing option of those con- 
sidered in this study was the full geometry Tafkaa 
option for atmospheric correction combined with a 
straightforward 750 nm normalizing algorithm for 
deglinting. Results also indicated that incorporating 
explicit view and illumination geometries within the 
inversion model has insignificant impact at smaller 
angles, that the model is not significantly affected by 
changes in the default bottom spectrum and that a 
kernel processing scheme for averaging water prop- 
erties produces decreased accuracy in the bathyme- 
try estimates. By testing and validating the model 
using AVIRIS imagery from Kaneohe Bay, Hawaii, 
results from this analysis have demonstrated model 
transferability and also provided further evidence of 
its reliability and robust performance capabilities. 
Furthermore, despite previous limitations on the 
availability of hyperspectral instruments, which 
were often limited to research investigations (e.g., 
AVIRIS, PHILLS), the accessibility and number of 
commercial airborne instruments continues to in- 
crease (e.g., HyMap, CASI, AISA), and even space- 
borne data from HYPERION is now available. 
Therefore, application of the semi-analytical model 
ultimately extends an important analysis tool to a di- 
versity of other shallow aquatic ecosystems. 
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